我想看一级黄色片_欧美性爱无遮挡电影_色丁香视频网站中文字幕_视频一区 视频二区 国产,日本三级理论日本电影,午夜不卡免费大片,国产午夜视频在线观看,18禁无遮拦无码国产在线播放,在线视频不卡国产在线视频不卡 ,,欧美一及黄片,日韩国产另类

首頁(yè) 500強(qiáng) 活動(dòng) 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

這家新創(chuàng)企業(yè)利用人工智能設(shè)計(jì)新藥

Jeremy Kahn
2020-11-06

這家公司使用了能夠更快制作和檢測(cè)蛋白質(zhì)的機(jī)器人實(shí)驗(yàn)室,,比人工測(cè)試更加可靠。

文本設(shè)置
小號(hào)
默認(rèn)
大號(hào)
Plus(0條)

身穿白色實(shí)驗(yàn)服、手戴紫色橡膠手套的男人和女人站在金屬桌旁,,看著一個(gè)個(gè)密封的小玻璃柜,。玻璃柜里,一臺(tái)機(jī)械手臂正在小心翼翼地將一組類似于小號(hào)滴管的器具對(duì)準(zhǔn)一個(gè)布滿了塑料坑眼的特制托盤(pán),,然后將經(jīng)過(guò)仔細(xì)測(cè)量的液體滴入坑眼,。托盤(pán)中內(nèi)嵌的感應(yīng)器和微芯片會(huì)檢測(cè)和自動(dòng)分析隨之發(fā)生的化學(xué)反應(yīng),將一系列數(shù)據(jù)發(fā)送至附近的電腦,。氛圍異常寂靜嚴(yán)肅,,但我一直在期待這位禿頭的“邦森?哈尼迪歐博士”以及這位倒霉的紅發(fā)助理“比克”——《布偶大電影》(The Muppets)中瘋狂科學(xué)家的角色——會(huì)突然從實(shí)驗(yàn)室后面的板凳上站起來(lái)。

然而,詹姆士?菲爾德帶我參觀了整個(gè)實(shí)驗(yàn)室,,他倒是像極了這類瘋狂科學(xué)家,,尤其是穿著實(shí)驗(yàn)室大褂的樣子。菲爾德很瘦,,頭上頂著濃密的棕色卷發(fā),,很像年輕時(shí)的愛(ài)因斯坦。在我見(jiàn)到他的那天,,他帶著一副圓圓的玳瑁色眼鏡,。菲爾德是LabGenius的創(chuàng)始人及首席執(zhí)行官,這是一家位于倫敦的初創(chuàng)企業(yè),,創(chuàng)建了這家高科技機(jī)器人實(shí)驗(yàn)室,,其所在地的前身是一家餅干工廠。

2012年,,菲爾德創(chuàng)建了這家公司,,那時(shí)他依然在倫敦的帝國(guó)學(xué)院(Imperial College)攻讀合成生物學(xué)博士學(xué)位。公司結(jié)合了機(jī)器化學(xué)和人工智能的優(yōu)勢(shì),,以生產(chǎn)有望成為重要新藥物制造基礎(chǔ)的新蛋白,。

如今,LabGenius宣布,,公司已經(jīng)收到了由倫敦風(fēng)投資本公司Atomic領(lǐng)投的1500萬(wàn)美元的風(fēng)投資本融資,,以幫助其進(jìn)一步發(fā)展公司業(yè)務(wù)。Atomico由Skype聯(lián)合創(chuàng)始人,、億萬(wàn)富翁尼克拉斯?曾斯特羅姆創(chuàng)建,。

菲爾德稱,這筆資金將從多個(gè)方面為L(zhǎng)abGenius提供幫助,。他寫(xiě)道:“會(huì)有更多的機(jī)器人,,更多的試驗(yàn),更多的人來(lái)運(yùn)行機(jī)器人”,,但同時(shí)也會(huì)開(kāi)發(fā)更高端的自動(dòng)實(shí)驗(yàn)室測(cè)試來(lái)確保公司制作更復(fù)雜的蛋白質(zhì),。

新融資輪的估值數(shù)額并未得到披露,但LabGenius向英國(guó)商業(yè)注冊(cè)機(jī)構(gòu)公司登記局(Companies House)提交的文件顯示,,新融資輪對(duì)公司的估值約為5300萬(wàn)美元,。

作為投資交易的一部分,Atomico的合伙人伊瑞娜?哈伊瓦斯將加入LabGenius的董事會(huì),。LabGenius此前的一些投資者,,包括Lux Capital、Obvious Ventures,、Kindred Capital和Inovia Capital,,亦參與了新融資輪,。

Atomico的合伙人哈伊瓦斯稱,她看到LabGenius幫助解決了制藥行業(yè)的“生產(chǎn)力危機(jī)”,,即新藥物發(fā)現(xiàn)速度下降,,以及每一種新藥上市的費(fèi)用越來(lái)越高。她說(shuō):“它們工作的方式在10多年間沒(méi)有什么改變”,,并指出大多數(shù)制藥公司依然在通過(guò)人工合成(也就是手工實(shí)驗(yàn))來(lái)尋找新藥物,,此舉通常會(huì)產(chǎn)生難以捕捉和驗(yàn)證的數(shù)據(jù)。她說(shuō):“如果沒(méi)有科技和數(shù)據(jù)來(lái)支持人類,,我覺(jué)得我們永遠(yuǎn)也無(wú)法擺脫這一現(xiàn)狀,。”

當(dāng)今的大多數(shù)藥物都是使用小分子制成的,。然而,,蛋白質(zhì)分子要大得多,而且結(jié)構(gòu)也更加復(fù)雜,,它是制藥行業(yè)所謂的“生物制劑”這種新興療法的基礎(chǔ),。這些都是經(jīng)實(shí)驗(yàn)室改造的蛋白質(zhì),能夠模仿身體中負(fù)責(zé)調(diào)節(jié)眾多功能的天然抗體和酶,。當(dāng)前,,基于蛋白質(zhì)的療法占到了所有藥物的約30%,其中包括眾多癌癥療法,,自身免疫紊亂和罕見(jiàn)病。相對(duì)于小分子的藥物,,基于蛋白質(zhì)的療法通常更有針對(duì)性,,而且副作用更小,但開(kāi)發(fā)的難度更大,,成本更高,。

菲爾德解釋說(shuō),問(wèn)題在于可用于創(chuàng)造蛋白質(zhì)的DNA組合太多,,因此,,要找到哪種組合可能會(huì)誕生有效的蛋白質(zhì)療法異常之困難。使用傳統(tǒng)的方法,,設(shè)計(jì)一個(gè)單一,、實(shí)用的蛋白質(zhì)可能需要耗費(fèi)一名研究員數(shù)年的時(shí)間。LabGenius使用了機(jī)器人自動(dòng)化,、合成生物學(xué)以及機(jī)器學(xué)習(xí)來(lái)加速這一過(guò)程,。

LabGenius已經(jīng)將目光瞄準(zhǔn)了他們希望治療的首類疾病——腸炎。菲爾德說(shuō),,這個(gè)領(lǐng)域頗有希望,,因?yàn)槭袌?chǎng)上已經(jīng)有多種藥物可以治療該疾病,,然而,這些藥物必須注射進(jìn)入患者體內(nèi),,因?yàn)樗鼈兊幕瘜W(xué)穩(wěn)定性還不是很好,,無(wú)法在口服后度過(guò)人體消化道中嚴(yán)苛的環(huán)境,并抵達(dá)腸部,。因此LabGenius一直在努力打造有著類似效用,、但能夠放入藥丸的蛋白質(zhì)。公司已經(jīng)生產(chǎn)了多種可能的蛋白質(zhì),,而且在實(shí)驗(yàn)室中已經(jīng)證明它們可以抵御消化酶以及胃部的酸性環(huán)境,。他說(shuō),下一步就是進(jìn)行動(dòng)物安全性試驗(yàn),。

公司使用了能夠更快制作和檢測(cè)蛋白質(zhì)的機(jī)器人實(shí)驗(yàn)室,,它比人工測(cè)試更加可靠,提供了有關(guān)其設(shè)計(jì)的蛋白質(zhì)生物特征的一系列信息,,例如它們的穩(wěn)定性,,以及它們對(duì)臨床關(guān)注的其他特定物質(zhì)的反應(yīng)。然后,,公司使用這個(gè)實(shí)驗(yàn)室培訓(xùn)機(jī)器學(xué)習(xí)模型,,來(lái)預(yù)測(cè)哪些DNA序列會(huì)對(duì)蛋白質(zhì)的特征存在關(guān)聯(lián)性。通過(guò)這種方式,,公司可以讓其正在設(shè)計(jì)的蛋白質(zhì)獲得制作有效藥物所需具備的特征,。

哈伊瓦斯說(shuō):“他們正在將現(xiàn)有設(shè)備與生物方法以及人工智能機(jī)器數(shù)據(jù)組結(jié)合,以便獲得這種慣性效應(yīng),?!?/p>

Zymergen也在使用類似的機(jī)器實(shí)驗(yàn)室和機(jī)器學(xué)習(xí)流程,該公司位于加州艾默瑞維爾,,專注于打造轉(zhuǎn)基因作物以及針對(duì)電子和消費(fèi)護(hù)理市場(chǎng)的新類型生物工程材料,。其估值在9月的融資輪之后達(dá)到了8.74億美元。Zymergen的首席技術(shù)官阿隆?肯博爾是LabGenius的一名顧問(wèn),。

它與Recursion Pharma使用的方法也十分類似,,該公司位于鹽湖城,如今其估值達(dá)到了4.65億美元,。該公司使用了高速機(jī)器人實(shí)驗(yàn)室來(lái)監(jiān)測(cè)小分子對(duì)細(xì)胞的效果,。

菲爾德說(shuō),不同之處在于,,小分子及其特性已經(jīng)擁有了一個(gè)龐大的數(shù)據(jù)庫(kù),,可供Recursion隨時(shí)使用。他指出,,對(duì)于蛋白質(zhì)來(lái)說(shuō),,DNA數(shù)據(jù)庫(kù)還遠(yuǎn)談不上全面,,這也就要求LabGenius逐漸組建自己的數(shù)據(jù)庫(kù)。(Recursion的聯(lián)合創(chuàng)始人及首席執(zhí)行官克里斯?吉布森亦是LabGenius的投資者,。)

考慮到蛋白質(zhì)對(duì)新藥發(fā)現(xiàn)的潛在影響,,預(yù)測(cè)蛋白質(zhì)的結(jié)構(gòu)也一直是人工智能研究人員的關(guān)注點(diǎn),包括倫敦人工智能公司DeepMind(是谷歌母公司Alphabet的子公司)以及Facebook的團(tuán)隊(duì),。兩年前,,DeepMind打造了一個(gè)名為AlphaFold的算法,使用深度神經(jīng)網(wǎng)絡(luò)(一種機(jī)器學(xué)習(xí)方法,,松散地基于人類大腦的工作方式),,在一個(gè)受到密切關(guān)注的兩年一度的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)賽事中展開(kāi)角逐。即便在那時(shí),,AlphaFold預(yù)測(cè)蛋白結(jié)構(gòu)的正確率也只有55%,。

菲爾德表示,通過(guò)學(xué)習(xí)其編譯蛋白質(zhì)DNA序列和生物特性之間的關(guān)聯(lián),,LabGenius可以跳過(guò)一個(gè)必要的困難步驟——預(yù)測(cè)其所設(shè)計(jì)的蛋白質(zhì)結(jié)構(gòu),。他指出,了解功能比了解構(gòu)成形式更重要,。畢竟達(dá)爾文的進(jìn)化論對(duì)于大自然所創(chuàng)建的結(jié)構(gòu)一無(wú)所知,,僅解釋了功能方面的必要性?!拔覀?yōu)槭裁捶且痛笞匀贿^(guò)不去呢,?”菲爾德說(shuō)。 (財(cái)富中文網(wǎng))

譯者:馮豐

審校:夏林

身穿白色實(shí)驗(yàn)服,、手戴紫色橡膠手套的男人和女人站在金屬桌旁,,看著一個(gè)個(gè)密封的小玻璃柜。玻璃柜里,,一臺(tái)機(jī)械手臂正在小心翼翼地將一組類似于小號(hào)滴管的器具對(duì)準(zhǔn)一個(gè)布滿了塑料坑眼的特制托盤(pán),然后將經(jīng)過(guò)仔細(xì)測(cè)量的液體滴入坑眼,。托盤(pán)中內(nèi)嵌的感應(yīng)器和微芯片會(huì)檢測(cè)和自動(dòng)分析隨之發(fā)生的化學(xué)反應(yīng),,將一系列數(shù)據(jù)發(fā)送至附近的電腦。氛圍異常寂靜嚴(yán)肅,,但我一直在期待這位禿頭的“邦森?哈尼迪歐博士”以及這位倒霉的紅發(fā)助理“比克”——《布偶大電影》(The Muppets)中瘋狂科學(xué)家的角色——會(huì)突然從實(shí)驗(yàn)室后面的板凳上站起來(lái),。

然而,詹姆士?菲爾德帶我參觀了整個(gè)實(shí)驗(yàn)室,,他倒是像極了這類瘋狂科學(xué)家,,尤其是穿著實(shí)驗(yàn)室大褂的樣子。菲爾德很瘦,,頭上頂著濃密的棕色卷發(fā),,很像年輕時(shí)的愛(ài)因斯坦,。在我見(jiàn)到他的那天,他帶著一副圓圓的玳瑁色眼鏡,。菲爾德是LabGenius的創(chuàng)始人及首席執(zhí)行官,,這是一家位于倫敦的初創(chuàng)企業(yè),創(chuàng)建了這家高科技機(jī)器人實(shí)驗(yàn)室,,其所在地的前身是一家餅干工廠,。

2012年,菲爾德創(chuàng)建了這家公司,,那時(shí)他依然在倫敦的帝國(guó)學(xué)院(Imperial College)攻讀合成生物學(xué)博士學(xué)位,。公司結(jié)合了機(jī)器化學(xué)和人工智能的優(yōu)勢(shì),以生產(chǎn)有望成為重要新藥物制造基礎(chǔ)的新蛋白,。

如今,,LabGenius宣布,公司已經(jīng)收到了由倫敦風(fēng)投資本公司Atomic領(lǐng)投的1500萬(wàn)美元的風(fēng)投資本融資,,以幫助其進(jìn)一步發(fā)展公司業(yè)務(wù),。Atomico由Skype聯(lián)合創(chuàng)始人、億萬(wàn)富翁尼克拉斯?曾斯特羅姆創(chuàng)建,。

菲爾德稱,,這筆資金將從多個(gè)方面為L(zhǎng)abGenius提供幫助。他寫(xiě)道:“會(huì)有更多的機(jī)器人,,更多的試驗(yàn),,更多的人來(lái)運(yùn)行機(jī)器人”,但同時(shí)也會(huì)開(kāi)發(fā)更高端的自動(dòng)實(shí)驗(yàn)室測(cè)試來(lái)確保公司制作更復(fù)雜的蛋白質(zhì),。

新融資輪的估值數(shù)額并未得到披露,,但LabGenius向英國(guó)商業(yè)注冊(cè)機(jī)構(gòu)公司登記局(Companies House)提交的文件顯示,新融資輪對(duì)公司的估值約為5300萬(wàn)美元,。

作為投資交易的一部分,,Atomico的合伙人伊瑞娜?哈伊瓦斯將加入LabGenius的董事會(huì)。LabGenius此前的一些投資者,,包括Lux Capital,、Obvious Ventures、Kindred Capital和Inovia Capital,,亦參與了新融資輪,。

Atomico的合伙人哈伊瓦斯稱,她看到LabGenius幫助解決了制藥行業(yè)的“生產(chǎn)力危機(jī)”,,即新藥物發(fā)現(xiàn)速度下降,,以及每一種新藥上市的費(fèi)用越來(lái)越高。她說(shuō):“它們工作的方式在10多年間沒(méi)有什么改變”,,并指出大多數(shù)制藥公司依然在通過(guò)人工合成(也就是手工實(shí)驗(yàn))來(lái)尋找新藥物,,此舉通常會(huì)產(chǎn)生難以捕捉和驗(yàn)證的數(shù)據(jù),。她說(shuō):“如果沒(méi)有科技和數(shù)據(jù)來(lái)支持人類,我覺(jué)得我們永遠(yuǎn)也無(wú)法擺脫這一現(xiàn)狀,?!?/p>

當(dāng)今的大多數(shù)藥物都是使用小分子制成的。然而,,蛋白質(zhì)分子要大得多,,而且結(jié)構(gòu)也更加復(fù)雜,它是制藥行業(yè)所謂的“生物制劑”這種新興療法的基礎(chǔ),。這些都是經(jīng)實(shí)驗(yàn)室改造的蛋白質(zhì),,能夠模仿身體中負(fù)責(zé)調(diào)節(jié)眾多功能的天然抗體和酶。當(dāng)前,,基于蛋白質(zhì)的療法占到了所有藥物的約30%,,其中包括眾多癌癥療法,自身免疫紊亂和罕見(jiàn)病,。相對(duì)于小分子的藥物,,基于蛋白質(zhì)的療法通常更有針對(duì)性,而且副作用更小,,但開(kāi)發(fā)的難度更大,,成本更高。

菲爾德解釋說(shuō),,問(wèn)題在于可用于創(chuàng)造蛋白質(zhì)的DNA組合太多,,因此,要找到哪種組合可能會(huì)誕生有效的蛋白質(zhì)療法異常之困難,。使用傳統(tǒng)的方法,,設(shè)計(jì)一個(gè)單一、實(shí)用的蛋白質(zhì)可能需要耗費(fèi)一名研究員數(shù)年的時(shí)間,。LabGenius使用了機(jī)器人自動(dòng)化,、合成生物學(xué)以及機(jī)器學(xué)習(xí)來(lái)加速這一過(guò)程。

LabGenius已經(jīng)將目光瞄準(zhǔn)了他們希望治療的首類疾病——腸炎,。菲爾德說(shuō),,這個(gè)領(lǐng)域頗有希望,因?yàn)槭袌?chǎng)上已經(jīng)有多種藥物可以治療該疾病,,然而,這些藥物必須注射進(jìn)入患者體內(nèi),,因?yàn)樗鼈兊幕瘜W(xué)穩(wěn)定性還不是很好,,無(wú)法在口服后度過(guò)人體消化道中嚴(yán)苛的環(huán)境,并抵達(dá)腸部,。因此LabGenius一直在努力打造有著類似效用,、但能夠放入藥丸的蛋白質(zhì),。公司已經(jīng)生產(chǎn)了多種可能的蛋白質(zhì),而且在實(shí)驗(yàn)室中已經(jīng)證明它們可以抵御消化酶以及胃部的酸性環(huán)境,。他說(shuō),,下一步就是進(jìn)行動(dòng)物安全性試驗(yàn)。

公司使用了能夠更快制作和檢測(cè)蛋白質(zhì)的機(jī)器人實(shí)驗(yàn)室,,它比人工測(cè)試更加可靠,,提供了有關(guān)其設(shè)計(jì)的蛋白質(zhì)生物特征的一系列信息,例如它們的穩(wěn)定性,,以及它們對(duì)臨床關(guān)注的其他特定物質(zhì)的反應(yīng),。然后,公司使用這個(gè)實(shí)驗(yàn)室培訓(xùn)機(jī)器學(xué)習(xí)模型,,來(lái)預(yù)測(cè)哪些DNA序列會(huì)對(duì)蛋白質(zhì)的特征存在關(guān)聯(lián)性,。通過(guò)這種方式,公司可以讓其正在設(shè)計(jì)的蛋白質(zhì)獲得制作有效藥物所需具備的特征,。

哈伊瓦斯說(shuō):“他們正在將現(xiàn)有設(shè)備與生物方法以及人工智能機(jī)器數(shù)據(jù)組結(jié)合,,以便獲得這種慣性效應(yīng)?!?/p>

Zymergen也在使用類似的機(jī)器實(shí)驗(yàn)室和機(jī)器學(xué)習(xí)流程,,該公司位于加州艾默瑞維爾,專注于打造轉(zhuǎn)基因作物以及針對(duì)電子和消費(fèi)護(hù)理市場(chǎng)的新類型生物工程材料,。其估值在9月的融資輪之后達(dá)到了8.74億美元,。Zymergen的首席技術(shù)官阿隆?肯博爾是LabGenius的一名顧問(wèn)。

它與Recursion Pharma使用的方法也十分類似,,該公司位于鹽湖城,,如今其估值達(dá)到了4.65億美元。該公司使用了高速機(jī)器人實(shí)驗(yàn)室來(lái)監(jiān)測(cè)小分子對(duì)細(xì)胞的效果,。

菲爾德說(shuō),,不同之處在于,小分子及其特性已經(jīng)擁有了一個(gè)龐大的數(shù)據(jù)庫(kù),,可供Recursion隨時(shí)使用,。他指出,對(duì)于蛋白質(zhì)來(lái)說(shuō),,DNA數(shù)據(jù)庫(kù)還遠(yuǎn)談不上全面,,這也就要求LabGenius逐漸組建自己的數(shù)據(jù)庫(kù)。(Recursion的聯(lián)合創(chuàng)始人及首席執(zhí)行官克里斯?吉布森亦是LabGenius的投資者,。)

考慮到蛋白質(zhì)對(duì)新藥發(fā)現(xiàn)的潛在影響,,預(yù)測(cè)蛋白質(zhì)的結(jié)構(gòu)也一直是人工智能研究人員的關(guān)注點(diǎn),包括倫敦人工智能公司DeepMind(是谷歌母公司Alphabet的子公司)以及Facebook的團(tuán)隊(duì)。兩年前,,DeepMind打造了一個(gè)名為AlphaFold的算法,,使用深度神經(jīng)網(wǎng)絡(luò)(一種機(jī)器學(xué)習(xí)方法,松散地基于人類大腦的工作方式),,在一個(gè)受到密切關(guān)注的兩年一度的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)賽事中展開(kāi)角逐,。即便在那時(shí),AlphaFold預(yù)測(cè)蛋白結(jié)構(gòu)的正確率也只有55%,。

菲爾德表示,,通過(guò)學(xué)習(xí)其編譯蛋白質(zhì)DNA序列和生物特性之間的關(guān)聯(lián),LabGenius可以跳過(guò)一個(gè)必要的困難步驟——預(yù)測(cè)其所設(shè)計(jì)的蛋白質(zhì)結(jié)構(gòu),。他指出,,了解功能比了解構(gòu)成形式更重要。畢竟達(dá)爾文的進(jìn)化論對(duì)于大自然所創(chuàng)建的結(jié)構(gòu)一無(wú)所知,,僅解釋了功能方面的必要性,。“我們?yōu)槭裁捶且痛笞匀贿^(guò)不去呢,?”菲爾德說(shuō),。 (財(cái)富中文網(wǎng))

譯者:馮豐

審校:夏林

Men and woman in white lab coats and purple rubber gloves stand beside metal tables, looking at small glass-enclosed cabinets. Inside, a robotic arm carefully lowers a clutch of what look like small eyedroppers to a specialized tray containing small plastic reservoirs, deploying a careful measure of liquid into each. Sensors and microchips embedded in the tray detect and automatically analyze the resulting chemical reaction, sending a stream of data to nearby computer. The atmosphere is hushed and serious, but I keep expecting the bald visage of Dr. Bunsen Honeydew and his hapless red-haired assistant Beaker—the mad scientist characters from The Muppets—to pop up from behind a lab bench.

Instead, I’m being led through the lab by James Field, who does look every bit the part of the mad scientist, particularly in his lab coat. Field is thin, with a Young Einstein–like whoosh of curly brown hair piled on his head, and, on the day I meet him, is wearing round, tortoiseshell glasses. He is the founder and chief executive of LabGenius, the London startup that owns this high-tech robotic lab, located in a former cookie factory.

The company, which Field founded in 2012 when he was still completing his Ph.D. in synthetic biology at London’s Imperial College, is combining advances in robotic chemistry and artificial intelligence to create new proteins that could be the basis for important new medicines.

Today, LabGenius announced it has received an additional $15 million in venture capital financing led by Atomico, the London-based venture capital firm created by Skype cofounder and billionaire Niklas Zennstr?m, to help it to further grow its business.

Field says the funding will help LabGenius in numerous ways. “It’s more robots, more experiments, more people to run the robots,” he notes, but also to develop more sophisticated automated lab tests to enable the company to make more complex proteins.

The valuation terms of the new financing were not disclosed, but documents filed with U.K. business registry Companies House indicate that new funding valued the company at about $53 million.

Atomico partner Irina Haivas will join LabGenius’s board as part of the investment deal. Previous investors in LabGenius, including Lux Capital, Obvious Ventures, Kindred Capital, and Inovia Capital, are also participating in the latest financing.

Haivas, the Atomico partner, says she sees LabGenius helping to solve a “productivity crisis” in the pharmaceutical industry, with the rate of new medicines being discovered slowing and the expense of each new drug brought to market rising. “The way they work hasn’t changed in more than 10 years,” she says, noting that most drug companies still find new medicines from a human-driven hypothesis that is tested through manual, human-run experiments, often producing data that is difficult to capture and verify. “I don’t see a way to get out of this—without supporting the human with technology and data,” she says.

The vast majority of today’s medicines are made using small molecules. But proteins—which are much larger and more structurally complex substances—are the basis of an emerging class of therapies often referred to in the pharmaceutical industry as “biologics.” These are lab-engineered proteins that can mimic the natural antibodies and enzymes that regulate many functions within the human body. Currently, protein-based therapies make up about 30% of all drugs. They include treatments for many cancers, autoimmune disorders, and rare diseases. Protein-based therapies are often far more targeted, and have fewer harmful side effects, than drugs based on small molecules, but they are considered more difficult and costly to develop.

The problem, as Field explains, is that there are so many possible DNA combinations that create proteins that it is extremely difficult to figure out exactly which combination might yield an effective protein therapy. Using traditional methods, designing a single, useful protein can take a researcher years. LabGenius is using robotic automation, synthetic biology, and machine learning to speed that process up.

LabGenius has set its sights on inflammatory bowel disease as the first disease it wants to target. Field says the area is promising because several drugs for the condition already exist, but they have to be injected into patients because they are not chemically stable enough to be taken orally and then survive the harsh environment of the human digestive tract to reach the bowel. So LabGenius has been working to create proteins that would perform similarly but could be put into a pill. The company has already produced several possible proteins and has shown in its lab that they can survive digestive enzymes and the acidic environment found in the stomach. The next step, he says, is conducting safety trials with animals.

The company uses its robotic lab, which can make and test proteins much faster and more reliably than experiments performed by humans, to create a library of information about the biological properties of proteins it is designing, such as how stable they are or how much they react with certain other substances that are of clinical interest. Then the company uses this library to train a machine-learning model to predict how certain DNA sequences correspond to a protein’s properties. In this way, it can drive the proteins it is designing toward the qualities that may make them useful drugs.

“They are integrating existing equipment with the biological methods and A.I. and their data set to get this flywheel effect,” Haivas says.

The robotic lab and machine-learning process is similar to that used by Zymergen, an Emeryville, Calif., company that is focused on creating genetically modified crops and new kinds of biologically engineered materials for the electronics and consumer care markets. It was valued at $874 million after a funding round in September. Aaron Kimball, Zymergen’s chief technology officer, is an adviser to LabGenius.

It’s also similar to the method used by Recursion Pharma, a Salt Lake City–based company, now valued at $465 million. It uses a high-speed robotic lab to screen the effect of small molecules on cells.

The difference, Field says, is that large libraries of small molecules and their properties already existed for Recursion to use. For proteins, the DNA libraries are not nearly as comprehensive, he says, requiring LabGenius to gradually build up its own. (Chris Gibson, Recursion’s cofounder and chief executive, is an investor in LabGenius too.)

Because of its potential impact in drug discovery, predicting the structure of proteins has also been a focus for artificial intelligence researchers, including teams at both DeepMind, the London-based A.I. company owned by Google parent Alphabet, and Facebook. Two years ago, DeepMind created an algorithm called AlphaFold that used a deep neural network—a kind of machine learning loosely based on how the human brain works—to trounce the competition at a closely watched biennial competition for protein structure prediction. But even then, AlphaFold could only correctly predict a protein’s structure about 55% of the time.

Field says that by learning the correspondence between a DNA sequence and the biological properties of the protein it encodes, LabGenius can skip the difficult step of having to predict the structure of the proteins it is designing. Knowing function, he says, is more important than knowing form. After all, he says, Darwinian evolution doesn’t have any understanding of the structures it is creating—it simply has a functional imperative. “Why argue with nature?” Field says.

財(cái)富中文網(wǎng)所刊載內(nèi)容之知識(shí)產(chǎn)權(quán)為財(cái)富媒體知識(shí)產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有。未經(jīng)許可,,禁止進(jìn)行轉(zhuǎn)載,、摘編、復(fù)制及建立鏡像等任何使用,。
0條Plus
精彩評(píng)論
評(píng)論

撰寫(xiě)或查看更多評(píng)論

請(qǐng)打開(kāi)財(cái)富Plus APP

前往打開(kāi)
熱讀文章